A maximal realcompactification with $0$-dimensional outgrowth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realcompactification of frames

for each a ∈ A. We denote the top and bottom elements of a σ-frame A respectively by 1A and 0A. σ-Frame homomorphisms preserve countable joins and finite meets. The resulting category is denoted σFrm. Extending the above notions by allowing arbitrary subsets and arbitrary joins in the definitions leads to the notions of a frame and a frame homomorphism, and the corresponding category Frm of fra...

متن کامل

Tensoring with Infinite-dimensional Modules in O 0 Tensoring with Infinite-dimensional Modules in O 0

We show that the principal block O0 of the BGG category O for a semisimple Lie algebra g acts faithfully on itself via exact endofunctors which preserve tilting modules, via right exact endofunctors which preserve projective modules and via left exact endofunctors which preserve injective modules. The origin of all these functors is tensoring with arbitrary (not necessarily finite-dimensional) ...

متن کامل

Hemirings, Congruences and the Hewitt Realcompactification

The present paper indicate a method of obtaining the Hewitt realcompactification vX of a Tychonoff space X, by considering a distinguished family of maximal regular congruences, viz., those which are real, on the hemiring C+(X) of all the non-negative real valued continuous functions on X.

متن کامل

Finding Maximal 2-Dimensional Palindromes

This paper extends the problem of palindrome searching into a higher dimension, addressing two definitions of 2D palindromes. The first definition implies a square, while the second definition (also known as a centrosymmetric factor), can be any rectangular shape. We describe two algorithms for searching a 2D text for maximal palindromes, one for each type of 2D palindrome. The first algorithm ...

متن کامل

Maximal Orders In Completely 0-simple Semigroups

Fountain, Gould and Smith introduced the concept of equivalence of orders in a semigroup and the notion of a maximal order. We examine these ideas in the context of orders in completely 0-simple semigroups with particular emphasis on abundant orders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0375239-x